"Kinetics, Reaction Mechanism and Stability of Sol-Gel Synthesized LaNiO₃ and LaCoO₃ Perovskite Catalysts for Syngas formation from Steam Reforming of Palm Oil Mill Effluent (POME)"

Dr. Cheng Yoke Wang Associate Professor Dr. Cheng Chin Kui Universiti Malaysia Pahang

The flourishing development of local oil palm industry inflicts concomitant generation of enormous, highly polluted palm oil mill effluent (POME). The prevalent open ponding treatment was land-intensive, sluggish, and incompetent to degrade POME to below discharge threshold yet being accused for greenhouse gases (CO₂ and CH₄) emission. This study investigated the potentiality of novel catalytic POME steam reforming over LaNiO₃ and LaCoO₃ to valorise pollutant-laden POME into valuable H₂-rich syngas. The POME feedstock was a brownish (A = \sim 1.93), acidic (pH of 5), and highly polluted (COD = \sim 70000 mg/L, BOD₅ = \sim 11000 mg/L, and TSS = ~7700 mg/L) wastewater. POME was composed of 99.73 mol% water and 0.27 mol% organics (mainly carboxylic acids, phenol, and alcohols). Through minimisation of total Gibbs free energy, thermodynamic simulation from 573 - 1173 K confirmed syngas production from POME steam reforming and predicted the likelihood of side reactions. Subsequently, LaNiO₃ and LaCoO₃ were synthesised using modified citrate sol-gel route. Combination of CO₂-TPD and NH₃-TPD asserted the net-acidity of LaNiO₃ and the net-basicity of LaCoO₃. Before POME steam reforming, the catalysts were reduced by H₂ to form well dispersed active metal (Ni or Co) on La₂O₃ support. Specifically, the active metal catalysed the reaction while the La₂O₃ support suppressed the coking deactivation. For both catalytic POME steam reforming, the optimum syngas yield and degradation efficiencies were determined by tuning temperature (T), POME flow rate (\dot{V}_{ROME}), catalyst weight (W_{eat}), and particle size (d_{eat}). The syngas yield and degradation efficiencies increased with greater T up to 873 K, higher V_{POME} up to 0.09 mL/min, greater W_{oat} up to 0.3 g, and smaller d_{oat} down to 74 µm. When T≥973 K, the catalysts experienced significant coking and sintering deactivation. If \dot{V}_{POME} >0.09 mL/min, coking deactivation of catalysts was conspicuous. For W_{eat} >0.3 g, the catalysts certainly agglomerated into a plate-like structure with reduced catalytic surface. When d_{gat} <74 µm, pore occlusion of catalysts responsible for appreciably declined catalytic activity. Thus, the optimum conditions of both catalytic POME steam reforming were T = 873 K, \dot{V}_{POME} = 0.09 mL/min, W_{cat} = 0.3 g, and d_{cat} = 74 -105 µm. However, the net-acidic LaNiO₃ granted higher amount of H₂-rich syngas $(F_{Syngas} = 132.47 \ \mu mol/min, y_{Syngas} = 72.60\%$, and HHV = 220.31 kJ/mol) than the net-basic LaCoO₃ ($F_{Syngas} = 86.60 \mu mol/min, y_{Syngas} = 70.71\%$, and HHV = 231.14 kJ/mol). In addition, the optimal catalytic treatment over LaNiO₃ generated a less polluted liquid condensate (COD = 326 mg/L and BOD₅ = 27 mg/L) than LaCoO₃ $(COD = 435 \text{ mg/L} \text{ and } BOD_5 = 62 \text{ mg/L})$. The net-acidity favoured the cracking of POME's organics before steam reforming while net-basicity promoted the carbonconsuming reverse Boudouard reaction by facilitating CO₂ adsorption. Conclusively, the novel catalytic POME steam reforming over LaNiO₃ or LaCoO₃ is alluring as it harnesses syngas while degrading the POME wastewater.

Presented at the MTSF Grant Research Symposium held on 26 November 2019.